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Example: Wythoff's Game

Rules
There are two piles of matchsticks. Each player has two types of moves:

@ Type | — Take a positive number of matches from one pile.

@ Type Il — Take the same positive number of matches from both piles.
The player who takes the last matchstick wins.
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Game Positions

We write (a1,...,a,) to denote a position with n piles of sizes ay, ..., a,.
For Wythoff’'s game, n = 2.
Definition

A game is at a P-position when the person who played Previously will
win, provided both players play optimally.
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Game Positions

We write (a1,...,a,) to denote a position with n piles of sizes ay, ..., a,.
For Wythoff’'s game, n = 2.

Definition

A game is at a P-position when the person who played Previously will
win, provided both players play optimally.

Definition
A game is at an N-position when the person to play Next will win,
provided both players play optimally.
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Game Positions

We write (a1,...,a,) to denote a position with n piles of sizes ay, ..., a,.
For Wythoff’'s game, n = 2.

Definition

A game is at a P-position when the person who played Previously will
win, provided both players play optimally.

Definition
A game is at an N-position when the person to play Next will win,
provided both players play optimally.

@ All positions are either P-positions or N-positions.

@ Every move from a P-position leads to an N-position.

@ From every N-position, there exists a move to a P-position.

@ One can always compute whether a position is a P-position or an
N-position.
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P-Positions of Wythoff's Game

Theorem (Wythoff, 1907)

All positions of the form (| né|, | n¢?|) or (|n¢?], | n¢|), for nonnegative

integers n, are P-positions. All other positions are N-positions. Here
¢ = 1+2\/§_

For example, (0, 0), (1, 2), (2, 1), (3, 5), (5, 3), (4, 7), (7, 4), ...are all
P-positions.
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Variant: m-Modular Wythoff

Rules
There are two piles of matchsticks. Each player has two types of moves:
o Type | - Take a positive number of matches from one pile.

@ Type Il - Take a matches from one pile and b matches from the
other, provided that a and b are positive and a = b (mod m).

The player who takes the last matchstick wins.
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Example: m =2

5
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Example: m =2

8-7=1 5-3=2
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Example: m=3
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Example: m =14
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Example: m=6
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Example: m=7
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Example: m =8
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Any m

Theorem (N.)

Let an, be the unique integer for which |am¢| < m < |(am + 1)¢|. Then
the P-positions of m-modular Wythoff consist of the set P, =

{(0,0), (18], [6°]). (1], [8]). - - (lam®], [am@® ), (lamd? |, [am])}-

Here ¢ = 1+ﬁ

Nelson Niu
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Any m

Theorem (N.)

Let an, be the unique integer for which |am¢| < m < |(am + 1)¢|. Then
the P-positions of m-modular Wythoff consist of the set P, =

{(0,0), (18], [6°]). (1], [8]). - - (lam®], [am@® ), (lamd? |, [am])}-

Here ¢ = 1+*/§

Note that

PQQgPa3gPa4g".gP7

where P is the set of P-positions for the original Wythoff's game.
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Generalizations of m-modular Wythoff

3 piles: What should the possible moves be?
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Generalizations of m-modular Wythoff

3 piles: What should the possible moves be?
@ Any subset of piles
» (0,0,—3) or (—4,—-8,—6) or (—5,0,—3) for m =2
@ One pile or all nonempty piles, positive amount per pile
» (0,0,—3) or (—4,—8,—6) or, only when second pile empty, (—5,0,—3)
for m=2

Nelson Niu Extensions of Classic Combinatorial Games 23 /35



Generalizations of m-modular Wythoff

3 piles: What should the possible moves be?

@ Any subset of piles
» (0,0,—3) or (—4,—-8,—6) or (—5,0,—3) for m =2

@ One pile or all nonempty piles, positive amount per pile
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Generalizations of m-modular Wythoff

3 piles: What should the possible moves be?

@ Any subset of piles
» (0,0,—3) or (—4,—-8,—6) or (—5,0,—3) for m =2

@ One pile or all nonempty piles, positive amount per pile
» (0,0,—3) or (—4,—8,—6) or, only when second pile empty, (—5,0,—3)

for m=2

@ One pile or all piles, nonnegative amount per pile
» (0,0,-3) or (—4,—8,—6) or (—6,0, —2) but not (—5,0,—3) for m =2
> 2 piles left...?
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Matchbox Game

Rules

There are n piles of matchsticks. Each player has two types of moves:

@ Type | — Take a positive number of matches from one pile.
@ Type Il — Take a; matches from the first pile, a matches from the
second pile, and so on such that ay = a, =--- =a, =0 (mod m)

and a1 +---+a, > 0.
The player who takes the last matchstick wins.
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There are n piles of matchsticks. Each player has two types of moves:
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Matchbox Game

Rules

There are n piles of matchsticks. Each player has two types of moves:

@ Type | — Take a positive number of matches from one pile.
@ Type Il — Take a; matches from the first pile, a matches from the
second pile, and so on such that ay = a, =--- =a, =0 (mod m)

and a1 +---+a, > 0.
The player who takes the last matchstick wins.
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Rules

There are n piles of matchsticks. Each player has two types of moves:
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P-positions of 2-pile Matchbox Game, m = 2
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P-positions of 2-pile Matchbox Game, m = 3
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P-positions of 2-pile Matchbox Game, any m

Theorem (N.)

o There are m? P-positions in the 2-pile Matchbox Game.
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P-positions of 2-pile Matchbox Game, any m

Theorem (N.)

o There are m? P-positions in the 2-pile Matchbox Game.

o Each integer from 0 to m?> — 1 appears exactly once as the first pile
and once as the second pile in the set of all P-positions.
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P-positions of 2-pile Matchbox Game, any m

Theorem (N.)
o There are m? P-positions in the 2-pile Matchbox Game.

o Each integer from 0 to m?> — 1 appears exactly once as the first pile
and once as the second pile in the set of all P-positions.

e FEach of the m? ordered residue pairs modulo m, from (0,0) to
(m — 1, m — 1), appears exactly once in the set of all P-positions.

32/35

Nelson Niu Extensions of Classic Combinatorial Games



Tying it all together

Using the properties of the Matchbox Game, we can prove the following:

Nelson Niu Extensions of Classic Combinatorial Games 33 /35



Tying it all together

Using the properties of the Matchbox Game, we can prove the following:
Theorem (N.)

There are a finite number of P-positions in the “one pile or all piles,

nonnegative amount per pile” 3-pile generalization of m-modular
Wythoff's Game.
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Future

For generalizations of the m-modular Wythoff Game and the Matchbox
Game:

@ Are there a finite number of P-positions?
@ What properties do the P-position satisfy?
@ Is there a formula for the P-positions?
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Future

For generalizations of the m-modular Wythoff Game and the Matchbox
Game:

@ Are there a finite number of P-positions?
@ What properties do the P-position satisfy?
@ Is there a formula for the P-positions?

In general, what property must a set of Type Il moves satisfy that will
ensure that a game has a finite number of P-positions?
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